(2x^2/7)=13

Simple and best practice solution for (2x^2/7)=13 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for (2x^2/7)=13 equation:



(2x^2/7)=13
We move all terms to the left:
(2x^2/7)-(13)=0
We get rid of parentheses
2x^2/7-13=0
We multiply all the terms by the denominator
2x^2-13*7=0
We add all the numbers together, and all the variables
2x^2-91=0
a = 2; b = 0; c = -91;
Δ = b2-4ac
Δ = 02-4·2·(-91)
Δ = 728
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{728}=\sqrt{4*182}=\sqrt{4}*\sqrt{182}=2\sqrt{182}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-2\sqrt{182}}{2*2}=\frac{0-2\sqrt{182}}{4} =-\frac{2\sqrt{182}}{4} =-\frac{\sqrt{182}}{2} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+2\sqrt{182}}{2*2}=\frac{0+2\sqrt{182}}{4} =\frac{2\sqrt{182}}{4} =\frac{\sqrt{182}}{2} $

See similar equations:

| (31x+17)=180 | | (43x-31)=180 | | (55x-15)=180 | | (40x+5)=180 | | (4x+52)=180 | | (7x+7)=180 | | (72-12x)=180 | | 7w=31 | | x-3.5=20 | | -16x^2+16x=-380 | | x-x/11=50/11 | | 4x-3(4x+5)=-11 | | x^2-19=4x+2 | | 2-3x=8-6x | | 4x+3-3x-6=25 | | 1/3a+1/2=1/2 | | x*1.2=302.68 | | x*1.2=302 | | 8x^2+8x+8=6 | | 8x^2+8x+8=4 | | 8x^2+8x+8=1 | | 8x^2+8x+8=16 | | 8x^2+8x+8=8 | | 8x^2+8x+8=48 | | b/4+6=14 | | 1.50x+6.50=50 | | 36^3m=216^-m | | (7x-2)/(12x-2)=3/8 | | Y=2.1^x-2^x | | x^2-45=-3x | | 46-2(x-2)=3x | | 5x+35=2x-19 |

Equations solver categories